Particle filtering approximations for a Gaussian-generalized inverse Gaussian model
نویسندگان
چکیده
منابع مشابه
promotion time cure model with generalized poisson-inverse gaussian distribution
background & aim: in the survival data with long-term survivors the event has not occurred for all the patients despite long-term follow-up, so the survival time for a certain percent is censored at the end of the study. mixture cure model was introduced by boag, 1949 for reaching a more efficient analysis of this set of data. because of some disadvantages of this model non-mixtur...
متن کاملMulti-Task Learning with Gaussian Matrix Generalized Inverse Gaussian Model
In this paper, we study the multi-task learning problem with a new perspective of considering the structure of the residue error matrix and the low-rank approximation to the task covariance matrix simultaneously. In particular, we first introduce the Matrix Generalized Inverse Gaussian (MGIG) prior and define a Gaussian Matrix Generalized Inverse Gaussian (GMGIG) model for low-rank approximatio...
متن کاملGaussian particle filtering
Sequential Bayesian estimation for nonlinear dynamic state-space models involves recursive estimation of filtering and predictive distributions of unobserved time varying signals based on noisy observations. This paper introduces a new filter called the Gaussian particle filter1. It is based on the particle filtering concept, and it approximates the posterior distributions by single Gaussians, ...
متن کاملGaussian sum particle filtering
In this paper, we use the Gaussian particle filter introduced in a companion paper to build several types of Gaussian sum particle filters. These filters approximate the filtering and predictive distributions by weighted Gaussian mixtures and are basically banks of Gaussian particle filters. Then, we extend the use of Gaussian particle filters and Gaussian sum particle filters to dynamic state ...
متن کاملRegression Analysis under Inverse Gaussian Model: Repeated Observation Case
Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2009
ISSN: 0167-7152
DOI: 10.1016/j.spl.2008.09.017